1-2 Measuring and Constructing Segments

Essential Learnings \#1

1-2 Measuring and Constructing Segments

Objectives

Use length and midpoint of a segment. Construct midpoints and congruent segments.

1-2 Measuring and Constructing Segments

Vocabulary

coordinate distance
length construction
between
congruent segments

1-2 Measuring and Constructing Segments

A ruler can be used to measure the distance between two points. A point corresponds to one and only one number on a ruler. The number is called a coordinate. The following postulate summarizes this concept.

1-2 Measuring and Constructing Segments

1-2 Measuring and Constructing Segments

The distance between any two points is the absolute value of the difference of the coordinates. If the coordinates of points A and B are a and b, then the distance between A and B is $|a-b|$ or $|b-a|$. The distance between A and B is also called the length of $\overline{A B}$, or $A B$.

$$
A B=|a-b| \text { or }|b-a|
$$

1-2 Measuring and Constructing Segments

Example 1: Finding the Length of a Segment

Find each length.

A. $B C$

$$
\begin{aligned}
B C & =|1-3| \\
& =|1-3| \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
A C & =|-2-3| \\
& =|-5| \\
& =5
\end{aligned}
$$

1-2 Measuring and Constructing Segments

Congruent segments are segments that have the same length. In the diagram, $P Q=R S$, so you can write $P Q \cong \overline{R S}$. This is read as "segment $P Q$ is congruent to segment RS." Tick marks are used in a figure to show congruent segments.

1-2 Measuring and Constructing Segments

You can make a sketch or measure and draw a segment. These may not be exact. A construction is a way of creating a figure that is more precise. One way to make a geometric construction is to use a compass and straightedge.

1-2 Measuring and Constructing Segments

Example 2 Continued

Sketch, draw, and construct a segment congruent to $\overline{\mathbf{M N}}$.
Step 1 Estimate and sketch. Estimate the length of M / V and sketch $P Q$ approximately the same length.
Step 2 Measure and draw.

Use a futer to measure $M N$. MN appears to be
3.5 in. Use a ruler to
draw $X Y$ to have length 3.5 in.

1-2 Measuring and Constructing Segments

Example 2 Continued

Sketch, draw, and construct a segment congruent to $\overline{M N}$.

Step 3 Construct and compare. Use a compass and straightedge to construct $\overline{S T}$ congruent to $\overline{M N}$.

A ruler shows that $\overline{P Q}$ and $\overline{X Y}$ are approximately the same length as $M N$, but $\overline{S T}$ is precisely the same length.

1-2 Measuring and Constructing Segments

Check It Out! Example 2 Continued

Sketch, draw, and construct a segment congruent to $\overline{J K}$.
Step 1 Estimate and sketch. Estimate the length of $M N$ and sketch $P Q$ approximately the same length.

Step 2 Measure and draw. Use a ruler to measure $J K$. JK appears to be 1.7 in. Use a ruler to draw $X Y$ to have length 1.7 in.

1-2 Measuring and Constructing Segments

Check It Out! Example 2 Continued

Sketch, draw, and construct a segment congruent to $\overline{\mathbf{J K}}$.

Step 3 Construct and compare. Use a compass and straightedge to construct $\overline{S T}$ congruent to \bar{J}.
A ruler shows that $\overline{P Q}$ and $\overline{X Y}$
 are approximately the same length as $J K$, but $\overline{S T}$ is precisely the same length.

1-2 Measuring and Constructing Segments

In order for you to say that a point B is between two points A and C, all three points must lie on the same line, and $A B+B C=A C$.

Postulate 1-2-2 Segment Addition Postulate

If B is between A and C, then $A B+B C=A C$.

1-2 Measuring and Constructing Segments

Example 3A: Using the Segment Addition Postulate

G is between F and $H, F G=6$, and $F H=11$.

 Find GH.$$
\begin{array}{ll}
F H=F G+G H & \text { Seg. Add. Postulate } \\
11=6+G H & \text { Substitute } 6 \text { for } F G \text { and } 11 \text { for } F H . \\
\frac{-6}{5}=\frac{-6}{G H} & \begin{array}{l}
\text { Subtract } 6 \text { from both sides. } \\
\text { Simplify. }
\end{array}
\end{array}
$$

1-2 Measuring and Constructing Segments

Example 3B: Using the Segment Addition Postulate
\boldsymbol{M} is between \boldsymbol{N} and \mathbf{O}. Find NO.

$$
\begin{aligned}
N M+M O & =N O & & \text { Seg. Add. Postulate } \\
17+(3 x-5) & =5 x+2 & & \text { Substitute the given values } \\
3 x+12 & =5 x+2 & & \text { Simplify. } \\
\frac{-2}{3 x+10} & =\frac{-2}{5 x} & & \text { Subtract } 2 \text { from both sides. } \\
\frac{\text { Simplify. }}{10} \frac{-3 x}{2} & =\frac{-3 x}{2} & & \text { Subtract } 3 x \text { from both sides. } \\
5 & =x & & \text { Divide both sides by } 2 .
\end{aligned}
$$

1-2 Measuring and Constructing Segments

Example 3B Continued

\mathbf{M} is between \boldsymbol{N} and \boldsymbol{O}. Find NO.

$$
\begin{aligned}
N O & =5 x+2 & & \\
& =5(5)+2 & & \text { Substitute } 5 \text { for } x . \\
& =27 & & \text { Simplify. }
\end{aligned}
$$

1-2 Measuring and Constructing Segments

Check It Out! Example 3a

Y is between X and $Z, X Z=3$, and $X Y=1 \frac{1}{3}$. Find $Y Z$.

$$
\begin{array}{cl}
X Z=X Y+Y Z & \text { Seg. Add. Postulate } \\
3=1 \frac{1}{3}+Y Z & \text { Substitute the given values. } \\
\frac{-1 \frac{1}{3}-1 \frac{1}{3}}{1 \frac{2}{3}=Y Z} & \text { Subtract } 1 \frac{1}{3} \text { from both sides. }
\end{array}
$$

1-2 Measuring and Constructing Segments

Check It Out! Example 3b

$$
\begin{aligned}
D E+E F & =D F \\
(3 x-1)+13 & =6 x \\
3 x+12 & =6 x \\
-3 x & -3 x \\
12 & =3 x \\
\frac{12}{3} & =\frac{3 x}{3} \\
4 & =x
\end{aligned}
$$

Seg. Add. Postulate
Substitute the given values
Subtract 3x from both sides.
Simplify.
Divide both sides by 3.

1-2 Measuring and Constructing Segments

Check It Out! Example 3b Continued

$$
\begin{aligned}
D F & =6 x \\
& =6(4) \\
& =24
\end{aligned}
$$

Simplify.

1-2 Measuring and Constructing Segments

The midpoint M of $\overline{A B}$ is the point that bisects, or divides, the segment into two congruent segments. If M is the midpoint of $\overline{A B}$, then $A M=M B$.
So if $A B=6$, then $A M=3$ and $M B=3$.

1-2 Measuring and Constructing Segments

Example 4: Recreation Application

The map shows the route for a race. You are at $X, 6000 \mathrm{ft}$ from the first checkpoint C. The second checkpoint D is located at the midpoint between C and the end of the race Y. The total race is $\mathbf{3}$ miles. How far apart are the 2 checkpoints?

$$
\begin{aligned}
X Y & =3(5280 \mathrm{ft}) \quad \text { Convert race distance to feet. } \\
& =15,840 \mathrm{ft}
\end{aligned}
$$

1-2 Measuring and Constructing Segments

Example 4 Continued

$$
X C+C Y=X Y \quad \text { Seg. Add. Post. }
$$

$6000+C Y=15,840 \quad \begin{aligned} & \text { Substitute } 6000 \text { for } X C \text { and 15,840 }\end{aligned}$

- 6000 - 6000 Subtract 6000 from both sides.
$C Y=9840 \quad$ Simplify .
$C D=\frac{1}{2}(9840) D$ is the mdpt. of $\overline{C Y}$, so $C D=\frac{1}{2} C Y$.
$=4920 \mathrm{ft}$
The checkpoints are 4920 ft apart.

